【管理人おすすめ!】セットで3割もお得!大好評の用語集と図解集のセット⇒ 建築構造がわかる基礎用語集&図解集セット(※既に26人にお申込みいただきました!)
梁のたわみを求めてみましょう。たわみを求める微分方程式は
です。上記式の詳細や導出方法等は、「曲率を表す式」、「曲げモーメントと曲率の関係」、「微分方程式による解法」を読んでください。
100円から読める!ネット不要!印刷しても読みやすいPDF記事はこちら⇒ いつでもどこでも読める!広告無し!建築学生が学ぶ構造力学のPDF版の学習記事
0< Lの場合
曲げモーメントMx =-w(x2-2lx+l2)/2
0< Lの場合
まず、微分方程式に曲げモーメントを代入すると、
たわみを求めたいわけですから、積分を行います。よって、
です。
未知数が2つありますので、境界条件を用いて解きます。まず、支点にはたわみは発生しないので境界条件は以下のように、
x=0,y1=0(0< Lの場合)
また、固定端では回転はしないため、回転角が0です。
x=0,θ1=0(0< Lの場合)
です。
以上のように、境界条件から未知数を求めることが出来ました。
よって、たわみとたわみ角の式は次の通りです。
0< Lの場合
ですね。よってx=Lのたわみ及びたわみ角は以下の式で示されます。
です。
【管理人おすすめ!】セットで3割もお得!大好評の用語集と図解集のセット⇒ 建築構造がわかる基礎用語集&図解集セット(※既に26人にお申込みいただきました!)
有料メルマガを無料で見てみませんか?⇒ 忙しい社会人、学生のためのビルディング・アップデート