【管理人おすすめ!】セットで3割もお得!大好評の用語集と図解集のセット⇒ 建築構造がわかる基礎用語集&図解集セット(※既に26人にお申込みいただきました!)
平行四辺形の法則は、2力(2つの力)を2辺とする平行四辺形の対角線が「2力の合力に等しくなる」法則です。2力の合力は三角比や三平方の定理を用いて算定します。逆に、平行四辺形の法則を用いて1つの力を2力に分解することも可能です。今回は平行四辺形の法則の法則と意味、計算、証明と角度との関係について説明します。平行四辺形の法則による合力、分力の求め方は下記が参考になります。
分力とは?1分でわかる意味、考え方と角度、計算、60度、斜面との関係
なお、平行四辺形の法則を理解するには三角比や三平方の定理(ピタゴラスの定理)も重要です。下記をご覧ください。
三角比の定義は?1分でわかる定義、覚え方、表、直角三角形と単位円との関係
ピタゴラスの定理とは?1分でわかる意味、証明、3:4:5の関係、三平方の定理との違い
100円から読める!ネット不要!印刷しても読みやすいPDF記事はこちら⇒ いつでもどこでも読める!広告無し!建築学生が学ぶ構造力学のPDF版の学習記事
平行四辺形の法則とは、2力(2つの力)を2辺とする平行四辺形の対角線が「2力の合力に等しくなる」法則です。
下図をみてください。1点に2つの力が作用しています。この合力の大きさと向きは「平行四辺形の対角線」になります。
2つの力をP1、P2とするとき、2力の合力は下式で計算します。※証明は後述しました。
また、下図のような平行四辺形(長方形)は、三角比と辺の長さの関係から簡単に合力が算定できます。
上図のように底辺と斜辺のなす角度は30度です。よって、三角比は「1:2:√3」です。底辺:斜辺=√3:2なので、対角線の長さは「底辺の長さ×2/√3」で算定できます。2力と合力も同様の関係なので、2力の合力は2P/√3です。三角比の計算、合力の求め方は下記が参考になります。
三角比の定義は?1分でわかる定義、覚え方、表、直角三角形と単位円との関係
また、平行四辺形の法則を使えば1つの力を2つの力に分解することも可能です。前述した操作の逆を計算すれば良いですね。分力の求め方の詳細は下記をご覧ください。
分力とは?1分でわかる意味、考え方と角度、計算、60度、斜面との関係
平行四辺形の法則は三角比と三平方の定理を用いて証明できます。下図のように2つの力をP1、P2とします。
この2力による平行四辺形をつくります。さらに、平行四辺形の縦方向の辺を斜辺とした「直角三角形」を作りましょう。直角三角形の角度をθとするとき、底辺=P1cosθ、高さはP1sinθです。
あとは、平行四辺形の対角線を斜辺とする直角三角形について「三平方の定理(ピタゴラスの定理)」より、対角線の長さ(2力の合力)を求めましょう。
合力をP3とすれば、
となります。
今回は平行四辺形の法則について説明しました。平行四辺形の法則とは、2つの力(2力)を2辺とする平行四辺形の対角線が「2つの力の合力になる」法則です。合力の求め方、分力の求め方を理解しましょう。下記も参考になります。
分力とは?1分でわかる意味、考え方と角度、計算、60度、斜面との関係
力の平行四辺形とは?1分でわかる意味、書き方、合力、分解、計算、力の3要素
【管理人おすすめ!】セットで3割もお得!大好評の用語集と図解集のセット⇒ 建築構造がわかる基礎用語集&図解集セット(※既に26人にお申込みいただきました!)
有料メルマガを無料で見てみませんか?⇒ 忙しい社会人、学生のためのビルディング・アップデート