【管理人おすすめ!】セットで3割もお得!大好評の用語集と図解集のセット⇒ 建築構造がわかる基礎用語集&図解集セット(※既に26人にお申込みいただきました!)
材料をX方向に引張ったときX方向に伸びます。一方で引張ってないY方向に材料が縮みます。この現象による、X方向とY方向の歪みの比率をポアソン比と言います。ポアソン比は材料の縦弾性係数と関係があります。今回は、そんなポアソン比について説明します。※弾性係数の意味は、下記が参考になります。
ポアソン比とヤング率の関係は下記をご覧ください。
ヤング率とポアソン比の関係は?1分でわかる意味と違い、求め方
100円から読める!ネット不要!印刷しても読みやすいPDF記事はこちら⇒ いつでもどこでも読める!広告無し!建築学生が学ぶ構造力学のPDF版の学習記事
ポアソン比は、XとY方向の歪の比率です。
下図は、棒の引張り試験をイメージしています。引張力を加えると棒は伸びます。引張方向の変形量をδとします。前述したように、引張る方向に棒は伸びますが、それと直交方向に棒は縮みます。
元の長さをLとすれば、ひずみε=ΔL/Lです。歪は、元の長さに対する変形量の比率です。歪は、部材の伸びにくさがわかります。※歪みについては下記が参考になります。
ひずみとは?1分でわかる意味、公式、単位、計算法、測定法、応力との関係
前述しましたが、引張った方向に棒が伸びたとき、実は直交方向には部材が縮んでいます。(赤線を伸ばした後の部材と考えてください)
このとき、直交方向の変形量をΔa(=a-a')としましょう。元々の長さをaとすれば、直交方向にも歪が発生していたことがわかります。部材に力を加えていた方向ではないのに、歪が発生しているのは、よく考えれば不思議ですね。
引張方向と引張直交方向の歪0みは下式です。
伸びる方向の歪みを正の値とすれば、縮む方向の歪との関係は下式で表します。
ε'は縮む方向の歪、νを「ポアソン比」、εは引張方向の歪です。※ポアソン比の記号は下記が参考になります。
ポアソン比の記号は?1分でわかる記号、読み方、コンクリートの値
上式より引張直交方向の歪は、引張方向の歪とポアソン比の積です。ポアソン比が1.0の場合は、引張方向の変形量とその直交方向の変形が全く同じとなります。
ポアソン比は材料固有の値で、コンクリートと鋼で値は違います。
前述した式より、ポアソン比は下記で計算します。
また、「-」符号は特に気にする必要はありません。
ポアソン比を実際に計算します。下図のように、部材の長さや直交方向の変形量がわかっている時のポアソン比を求めてください。
それぞれの歪を計算します。
よってポアソン比νは下記となります。
ポアソン比は材料固有の値なので、鋼を使うことが分かっていればポアソン比も判明しています。つまり、引張直交方向の変位は逆算することが可能です。
コンクリートと鋼のポアソン比は一般的に下記の値を使います。
つまり、鋼の方がコンクリートよりも引張直交方向に変形しやすいのです。
ポアソン比は横弾性係数と関係します。横弾性係数については下記が参考になります。
横弾性係数は下式で計算します。
Gは横弾性係数、Eは縦弾性係数、νはポアソン比です。前述したコンクリートと鋼のポアソン比を元に、横弾性係数を計算します。
まずコンクリートのν=0.167なので、
です。次に鋼のν=0.30ですから、
となりました。
両者共に、横弾性係数は縦弾性係数の半分以下ですね。横弾性係数はせん断力に対する抵抗値を示しますが、せん断力にはあまり強くないことが伺えます。
今回はポアソン比について説明しました。ポアソン比自体の定義や計算は難しくありません。ただ、横弾性係数など大切な場面で使用するので、鋼とコンクリートのポアソン比の値は覚えておきましょう。下記も併せて勉強しましょうね。
ヤング率とポアソン比の関係は?1分でわかる意味と違い、求め方
ポアソン数とは?1分でわかる意味、計算、例題、ポアソン比との関係
【管理人おすすめ!】セットで3割もお得!大好評の用語集と図解集のセット⇒ 建築構造がわかる基礎用語集&図解集セット(※既に26人にお申込みいただきました!)
有料メルマガを無料で見てみませんか?⇒ 忙しい社会人、学生のためのビルディング・アップデート