【管理人おすすめ!】セットで3割もお得!大好評の用語集と図解集のセット⇒ 建築構造がわかる基礎用語集&図解集セット(※既に26人にお申込みいただきました!)
直角三角形の高さは、ピタゴラスの定理や三角比と辺の長さの関係を利用して解きます。直角三角形の底辺と斜辺が既知のとき、高さは計算可能です。今回は直角三角形の高さの計算、求め方、公式、直角二等辺三角形の辺の長さを説明します。直角三角形の斜辺、底辺の長さ、ピタゴラスの定理の意味は、下記が参考になります。
ピタゴラスの定理とは?1分でわかる意味、証明、3:4:5の関係、三平方の定理との違い
直角三角形の底辺の長さは?1分でわかる計算、斜辺、高さ、角度との関係
100円から読める!ネット不要!印刷しても読みやすいPDF記事はこちら⇒ いつでもどこでも読める!広告無し!建築学生が学ぶ構造力学のPDF版の学習記事
直角三角形の高さとは、下図に示す斜辺と底辺以外の、辺の長さです。
ただ、底辺と高さは定義次第で変わります。例えば、同じ三角形でも向きを変えれば、底辺と高さの関係は変わります。
直角三角形の斜辺、底辺の長さの求め方は、下記が参考になります。
直角三角形の底辺の長さは?1分でわかる計算、斜辺、高さ、角度との関係
直角三角形の高さの公式は下記です。
これはピタゴラスの定理(三平方の定理)を利用した公式です。また、三角比の関係より直角三角形の角度および1辺の長さが既知であれば、高さを逆算できます。三角比を下記に示します。αが鋭角の角度です。
sinα=高さ/斜辺
cosα=底辺/斜辺
tanα=高さ/底辺
では実際に、直角三角形の高さを計算しましょう。
下図をみてください。直角三角形の高さ以外の辺の長さが既知です。
このとき、直角三角形の高さは公式を用いて算定できます。
下図のように鋭角の角度と斜辺の長さが既知であれば、高さが計算できます。
直角二等辺三角形なので三角比sinαは、
sin45=1/√2
ですね。斜辺が4なので高さは
a/4=1/√2
a=2.83
です。
直角二等辺三角形は、斜辺以外の長さが同じです。下図をみてください。
よって、どちらが高さ、底辺でも辺の長さは同じです。特殊な三角形の1つです。三角比(sin、cos、tan)の関係も暗記しましょう。三角比の意味は、下記が参考になります。
鋭角の三角比とは?1分でわかる意味、辺の長さと角度の関係、三平方の定理
今回は直角三角形の高さについて説明しました。求め方、計算方法、公式が理解頂けたと思います。まずはピタゴラスの定理を理解しましょう。その後、三角比と辺の長さ、角度との関係を覚えてくださいね。下記も参考になります。
ピタゴラスの定理とは?1分でわかる意味、証明、3:4:5の関係、三平方の定理との違い
【管理人おすすめ!】セットで3割もお得!大好評の用語集と図解集のセット⇒ 建築構造がわかる基礎用語集&図解集セット(※既に26人にお申込みいただきました!)
有料メルマガを無料で見てみませんか?⇒ 忙しい社会人、学生のためのビルディング・アップデート