【管理人おすすめ!】セットで3割もお得!大好評の用語集と図解集のセット⇒ 建築構造がわかる基礎用語集&図解集セット(※既に26人にお申込みいただきました!)
内分点(ないぶんてん)とは、線分を内分する(2つに分けるような)点です。平面座標にA、B点があるとき、線分ABの間に点Cを設けると、線分ACと線分CBがつくられます。このような点Cが内分点です。今回は内分点の意味、求め方、公式、座標との関係について説明します。内分の意味、2点間の距離の求め方は下記が参考になります。
2点間の距離とは?1分でわかる意味、公式と計算方法、座標との関係
100円から読める!ネット不要!印刷しても読みやすいPDF記事はこちら⇒ いつでもどこでも読める!広告無し!建築学生が学ぶ構造力学のPDF版の学習記事
内分点(ないぶんてん)とは、線分を内分する(2つにわけるような)点です。下図をみてください。これが内分点です。
座標にA、B点があります。A点、B点を結ぶと線分ABになります。線分ABを間に点Cを設けると、線分AC、線分CBがつくれますね。
このとき点Cを「内分点」といいます。下図をみてください。線分AB上に点Cを設けるので、線分ACとCBの比率がm:nのとき、長さの比は下記の関係になります。
内分の意味は下記が参考になります。
下図をみてください。A、B点の座標がそれぞれ(x1,y1)、(x2,y2)のとき、内分点の座標は下式で算定します。
なおm=nのとき、内分点は線分ABの真ん中にあります。よって内分点の座標は下記となります。
具体的な座標の値を元に、下記の内分点の座標を計算しましょう。
A(2,3)、B(5,10)、AC:CB=m:n=1:3
なお2点の座標がわかれば、ピタゴラスの定理を用いて線分の長さを計算できます。ピタゴラスの定理、2点間の距離の求め方は下記が参考になります。
ピタゴラスの定理とは?1分でわかる意味、証明、3:4:5の関係、三平方の定理との違い
2点間の距離とは?1分でわかる意味、公式と計算方法、座標との関係
今回は内分点について説明しました。内分点とは線分を内分する(2つにわけるような)点です。例えば、線分ABを内分し、線分AC、CBをつくるような点Cが内分点です。内分点の座標の求め方、2点間の距離の求め方を理解しましょう。下記が参考になります。
2点間の距離とは?1分でわかる意味、公式と計算方法、座標との関係
【管理人おすすめ!】セットで3割もお得!大好評の用語集と図解集のセット⇒ 建築構造がわかる基礎用語集&図解集セット(※既に26人にお申込みいただきました!)
有料メルマガを無料で見てみませんか?⇒ 忙しい社会人、学生のためのビルディング・アップデート